Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe(3.).

نویسندگان

  • Fangyuan Gai
  • Tianlei Zhou
  • Guang Chu
  • Ye Li
  • Yunling Liu
  • Qisheng Huo
  • Farid Akhtar
چکیده

This work demonstrates a novel method for the synthesis of large pore mesoporous silica nanoparticles (MSNs) with a pore diameter of 10.3 nm and a particle diameter of ∼50 nm based on the incorporation of mixed anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulphate (SDS) as the template in the synthesis process. The dispersity, morphology, pore structure and size of mesoporous nanoparticles were adjusted by changing the molar ratio of two anionic surfactants, the concentration of the co-structure-directing agent (3-aminopropyltrimethoxysilane) and the reaction temperature. The results of synthesis experiments suggested that the formation of large pore MSNs involved a nucleation and growth process. MSNs were post-grafted with a Schiff base moiety for fluorescence sensing of Fe(3+) in water. The applicability of functionalized MSNs was demonstrated by selective fluorescence detection of Fe(3+) in aqueous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Silanolate Groups (SiO-) in Synthesis of Micelle Templated Silica with Various Condition of Cationic Surfactant

Based on the {S+, I-} pathway, the concentration of surfactant and surface charge density of silanolate groups control the phase transition from lamellar, to hexagonal through cubic form. The high surface charge density of silanolate groups was observed for the lamellar phase. With decrease of molar concentration of surfactant on the gel, the yield of...

متن کامل

Aqueous Stability of Mesoporous Silica Films Doped or Grafted with Aluminum Oxide

Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis...

متن کامل

Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic inter...

متن کامل

Self-assembled TiO(2) nanoparticles: mesoporosity, optical and catalytic properties.

Herein, we explore the idea of self-assembly of nearly monodisperse nanoparticles as uniform building blocks to design highly crystalline mesoporous TiO(2) nanoparticles, through evaporation-induced self-assembly (EISA) and hydrothermal methods by using non-ionic Pluronic F127 and anionic surfactant SDS, respectively as structure directing agents. The small- and wide-angle powder X-ray diffract...

متن کامل

Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures{

Successive mesophase transformation induced by an anionic surfactant such as sodium dioctyl sulfosuccinate (AOT) has been demonstrated to fabricate four kinds of large pore mesoporous silica materials in a triblock copolymer F127 surfactant assembly system. The transformation of the highly ordered mesostructures from face-centered cubic (space group Fm3̄m) to body-centered Im3̄m then towards two-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2016